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ABSTRACT

This paper discusses the dynamic properties and determines the

mathematical model for the adaptive control of the robotic system

presently under investigation at Robotic Application and Development

LAboratory at Kennedy Space Center.

NASA is currently investigating the use of robotic manipulators for

mating and demating of fuel lines to the Space Shuttle Vehicle prior to

launch. The Robotic system used as a testbed for this purpose is an ASEA

IRB-90 industrial robot with adaptive control capabilities. THe system

was tested and it's performance with respect to stability was improved

by using an analogue force controller.

The objective of this research project is to determine the mathematical

model of the system operating under force feedback control with varying

dynamic internal perturbation in order to provide continuous stable
operation under variable load conditions. A series of lumped parameter
models are developed. The models include some effects of robot
structural dynamics, sensor compliance, and workpiece dynamics.
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SUMMARY

The Robot Application and Develo_nt Laboratory at Kennedy Space Center -.
has been tasked to address the unique needs of the center in preparing,

ground servicing and launching the nation's spacecraft.
Unlike industrial applications, these are not monotonous repetition of

relatively simple tasks but occaslonal/Intermlttent performance of very

sophisticated tasks. To achieve the goal, Robotic Application Laboratory

has put together a state of the art robotic system which provides an
excellent and easy to use testbed. The goal is to provide an

experimental testbed to examine possible robotic solutions for a wide

variety of tasks which might benefit the center in terms of safety,

quality, reliability or cost saving.

Mating and demating of umbilical fuel lines for the main tank of the

Space shuttle vehicle is one area that Robotic Application and

Development Laboratory is working on. In order for a robot to accomplish
the task of umbilical mating the following three distinct phases must

occur.

o Vision tracking must take place to allow the robot to approach and
track the umbilical socket.

o The second phase is the actual mating process to occur which require

a combination of mechanical guidance, compliance and active force

feedback .

o The last phase happens when a solid mating has occurred. This is the

most critical part of the process where the random motlons of the Space

Shuttle Vehicle has to be duplicated by the robot using a force feedback

approach to avoid large contact forces.

Initial experimental tests had indicated that the existing robotic

system had tendency of becoming unstable while following the random

motions of the Space Shuttle Vehicle simulator. This problem was

investigated thoroughly in the summer of 1988.
The cause of the problem was traced ( 240 msec time delay in the

adaptive control path ). An alternate method of Imple_nting force

control to provide proof of concept to avoid time delay was developed.

The goal in this research project is to determine the mathematical

model of the system . The closed loop performance of the system has been

observed in the laboratory to be stable and satisfactory for most

applications. The particular properties of the system that can lead to

instability and limit performance has been discussed. A series of lumped

parameter models are developed in an effort to predict the closed loop

dynamics of force controlled arm. While experimental tests indicated the

computational time delay to be the main source of instability,

qualitative analysis shows that the robot dynamics can have significant

contribution to the system's instability.
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1. INTRODUCTION

Motion of robots can be accurately described by Coupled sets of highly

nonlinear ordinary differential equations. Closed form analytical solu-

tions for these equation are not easily available. Physically the cou-

pling terms represent gravitational torques, which depend on positions of

the joints; reaction torques, due to acceleration of other Joints; and of

course coroills and centrifugal torques. The magnitude of these interac-

tion torques depends on the physical characteristics of the manipulator

and the load it carries.

The effects mentioned above complicates the task of accurately determining

model of the system. Therefore simple tasks llke inserting a peg in the

hole as well as complicated ones llke following the random motions of

flight simulator must be broken down Into subtasks. Much work has been

done by many researchers on the subject of force control for robotic

manipulators [i], [2], [3], [4], [5]. One of the problems confronting

anyone trying to assimilate this information is that there seem to be _s

many different techniques and models for force control as there are

researchers in the field. After reviewing many of these results, I have

attempted to come up with an approximate model for the system under inves-

tigation in Robotic Application and Development Laboratory at Kennedy

Space Center.

While my main goal is to discuss force control models it should be noted

that a force controller must always be used in conjunction with a position

controller. Host commonly one wants to specify force control only along

selected cartesian degrees of freedom while the remainder are controlled

according to position trajectory.

2. FORCE CONTROL, G_ CONSIDERATIONS

In general if we put the issue of coordinate transformation aside for the

moment, each axis of a force controlled arm can be viewed as a single

input (the motor), dual output (position sensor and force sensor) system.

The method by which the signals are processed and feedback to the motor

determines the performance characteristics of the servo loop. Although it

is impossible to make an unequivocal classification of all force servos,

it is possible to group most algorithms into three broad categories:

torque based, velocity based or position based. This classification is

based upon the concept of successive loop closure, that is, closing an

inner loop on one sensor and then closing an outer loop using another

sensor.

In general the situation Is illu_trated in Figure i, showing the sensor

signal being processed along with command input, to form a corrective

command for the manipulators motors. This model is appropriated for most

electric arms where the basic control variable is motor torque. However,

it is possible to have three different situations:

V
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o The force sensor signal is processed to become a torque command.
o The force sensor signal is processed to become a velocity command to
a inner velocity loop or
o the force signal is processed to become a position command to a inner
position loop .

COMMANDS __ COMPENSATION

l
Fm_mmm 1

t • ..-. , I POSITION

_L_ POSITION I .....

SERVO PUH(;_

Fig. 1. Generalized force feedback servo with inner position loop

2.1 ADAPTIVE CONTROL FEATURE OF RADL SYSTEM

The problem of self-adjusting the parameters of a controller In order to

stabilize the dynamic characteristics of a process, when the plant

parameters undergo large and unpredictable variations, has led to the

development of adaptive control techniques. Adaptation, In some sense,
can be viewed as "combined identification and control of a

particular system"

Since adaptive control has very extensive scope , therefore it

is necessary to clarify what we have in mind by the term "Adaptive
Control".

The role of adaptation mechanism can either be :

o A parametric adaptation, by adjusting the parameters of the

simulated plant, or

o Signal-synthesis adaptation, by applying an appropriate signal to the

input of the plant.
In the case of ASEA Robotics System which is used in the Robotic

Application and Development Lab (RADL), the use of "Adaptive Control"

implies the ability to adapt to real world changes as determined by

sensory devices, by changing the input to the system. Since the sensory

device (force/torque sensor) is sensing the force therefore it is also
considered as force control.
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The original intent of including "Adaptive Control feature on the ASEA
robot was to allow external sensors to modify the trajectory of the

robot to compensate for the irregularities and uncertainties in welding

and gluing operations. Trajectory modification_ through the adaptive

control inputs a11ow real time adaptation of the path

2.2 FORCE CONTROL FEATURE OF RADL SYSTEM

AS was mentioned before the goal of RADL is to accomplish the mating of

an umbilical fuel line to a moving target representing the external tank

of the Space Shuttle Vehicle (SSV). To perform this a vision system is

first used t o approach and track the target. This is followed by mating
the robot-maneuvered umbilical plate to the SSV hardware. While it is

mated the hard part of the process must take place namely the robot must
dublicate the random motion of SSV to avoid any large contact forces and

damage to the SSV. Finally, the force controller must allow the

withdrawl of the mating plate and return control back to the vision

system.

During contact between the robot and an external object in this case the
random motion simulator (RMS) table, forces are generated. Since the

system is typically quite stiff, relatively large forces can be created

by small motions. The contact force can be modified by commanding small
changes in the robot's position to adjust the force to desired value.

Typically the desired contact force must be large enough to allow the
robot to remain in contact with the object.

One very straightforward approach to force control is called damping
Control. With this method the command veloc|ty of the robot is

proportional to and in the direction opposite the applied force. In

effect, the robot moves so as to relieve the forces generated during
elastic contact, this approach makes the robot appear as a viscous

damper.

The proportional constant between the commanded velocity and the voltage

signal representing the force is called the control gain. this value

approximately determines the forces that are seen at a given speed. The

proper selection of the controller gain will be a prime goal in th

development of the force controller. Typically, the higher the control

gain, the lower the apparent damping value of the robot. This results in
lower contact force for a given tracking speed. However, the higher the

control gain, the more prone a system is to instability.
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2.3 FORCE CONTROL USING ASEA's ADAPTIVE APPROACH

The general configuration of RADL robotic system is depicted in Fig.2.
This is a functional representation of ASEA "controller with force
feedback.
ASEA's controller is capable of operating the robot under force control
by using the Adaptive Control software package. With this approach, a

correction vector is programmed prior to operation of the robot. The
velocity along the vector is set proportionally to an external input

signal. The analogue output signals of the JR3 are able to work directly
with these inputs. The adaptive control port operates in a damping

control mode, as the resulting velocity is proportional to the input

voltage ( force signal).
Force control through the Adaptive Control software has been achieved in

the lead-around demonstration. Further, force control when the robot is

in contact with a rigid object can be achieved using the Adaptive

Control software, provided that the controller gain is set low enough.

At this value, the motion of the robot is extremely slow for a given

force, and the force/velocity performance is far from the required
val ues.

A significant point involved in the use of the ASEA robot with force
feedback control is that only the terminal points can be programmed or

downloaded from an external computer. The actual trajectory for the

endpoint is generated internally by an interpolation routine , as

diagrammed in Fig.2. The ramification of this observation is that only

modifications of the trajectory endpoints can made using an external

computer. The real-time trajectory as defined by the interpolation

routine, can not be modified by this approach . the importance of this

observation is dependent on the relative time scales involved. For the

existing vision system , trajectory endpoints can be updated at a rate

of between 7 and 10 hz. With a new trajectory determined at each

interval and with the robot not being required to finish it's initial

trajectory the robots dynamics are slow enough to smooth out these

trajectory variations .

However for systems requiring rapid modifications , such as force/torque

feedback control , the time delay associated with computer communication

link is expected to be slow enough to cause instabilities in the
control.

The adaptive control feature of ASEA robotic system provide a path for

X, Y, and Z axis. This feature allows for the preprogrammed trajectories

to be modified based on external inputs to the controller. The velocity

of the generated trajectory can be modified by an analogue or digital

input signal , allowing an integral force feedback control loop to be

placed around the existing position control loop , as demonstrated in

Fig.2
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3. DYNAMIC MODELS OF FORCE-FEEDBACK ROBOT

3.1. CASE #.I. To begin with a simple case, let us consider the robot to

be a rigid body with no vibrational modes. Let us also consider the

workpiece (flight side) to be rigid , having no dynamics. The force

sensor connects the two with some compliance as shown in Fig.3.

_ _/ zr j .

Kobor r_wSO#

Fig.3: Robot model for case #.I

The robot has been modeled as a mass with a damper to ground. The mass m

represents the effective moving mass of the arm. The viscous damper b is

chosen to give the appropriate rigid body mode to the unattached robot.

The sensor has stiffness k and damping b. The robot actuator is

represented by the input force F and the state variable x measures the

position of the robot mass.

The open-loop dynamics of this simple system are described by

the following transfer function:

X(s)IF(s) = I/[mr_+(br + bs)s + k5]

Since this robot system is to be controlled to maintain a

contact force, we must recognize that the closed loop system
variable is the force across the sensor, the contact force F

desired

output

_= ksxr

Implementing the simple proportional force control law :

F F:) k_>= 0

which states that the actuator force should be some nonnegative force

feed-back gain _times the difference between some desired contact force

and the actual contact force. This control law is embodied in the

block diagram of Fig.4.
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Fig.4 Block diagram for the system of case #.1

The closed loop transfer function then becomes

(s)/_(s)= k_*4/ [m,_+ ( _÷ _ )s÷ _(I+ _)]

The control loop modifies the the characteristic equation only in the
stiffness term. The force control for this case works like a position

servo system . This could have been predicted the model in Fig.5 by

noting that the contact force depends solely upon the robot position xt.

For completeness let us look at the root locus plot for this system.

Fig. 5 shows the positions in the s-plane of the roots of the closed

loop characteristic equation as the force feedback gain k varies.

V

JTlut

Kg

Fig.5 Root locus plot for system of case#.1

C
J

V
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For k = O, the roots are at the open loop poles. The loci show that as
the _ain is increased,the natural frequency increases, and the damping
ratio decreases, but the system remains stable. In fact, _can be chosen
to give the controlled system desirable response'character'tstic.

3.1.2 CASE #.2 Include flight side dynamics. The simple robot system of

Fig.5 has been shown to be unconditlonally stable for k_ >= O. Force
controlled systems, however, are not this Simple and "specially the

neglecting of dynamics of the of the environment with which the robot is

in contact plays an important role.

Fig.6 is representing the system In which the dynamics of the
environment has been taken into consideration. The new state variable is

now x_measures the position .

ROBOT SENSOR WORKPIECE '

Fig.6: Dynamic model of robot described in case#.2

The open loop transfer function of this two degree of freedom
robot is :

X(s)/F(s) :[m s:+ (b_+ b_)s+ (kw+ ks)]/A

where A : [mrs_ +(br+b s )s+_]*[m_s:+(bs +b#)s+(km+k_)]-(b_s+k s

system

The output variable is again the contact force F , which is the force

across the sensor, given by _ = ks(x _- x_).

If we now implement the same simple force controller, the control law

remains unchanged.

F = k_(Fa- Fc )
The block diagram for this control system is shown in Fig.9.
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Fig.7 : Block diagram for the system of case #.2

Note that the feedforward path includes the difference between the two

open loop transfer functions.

The root locus for this system is plotted in Fig.8 as the force

feedback gain _ is varied.

_m a-@k_wr

Re

Fig.8 : Root locus plot of system of case #.2

As the root locus indicates there are four open loop poles and two two

open loop zeros. The plot then still has two asymptotes at + 90 . The

shape of the root locus plot tells us

that even for high values of gain, the system has stable roots

Therefore, while the characteristic, of the workpiece affect the

dynamics of the robot system, they do not cause unstable behavior.
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3.1.3 CASE #.3. INCLUDE ROBOT DYNAMICS

Since the addition of the flight side dynamic_to the simple robot
system model did not result in the observed instability, we will

consider a system with a more complex robot model. If we wish to include

both the rigid-body and first vibratory modes of the arm, then the robot

alone must be represented by two masses . Fig g shows the new system
model.

SF.NSO_ WOIClCPIF.c_F.O_)T

Fig.9 : Robot system model described in case #.3.

The total robot mass is now split between m_and _. The spring and tie
damper with values k_and _ set the frequency and d_mping of the robot s

first mode, while the damper ground, bi_primarily governs the rigid-body
mode. The stiffness between the robot mass could be the drive train or

transmission stiffness, or it could be the structural stiffness of

a link. The masses m. and m_ would then be chosen accordingly. The sensor

and workplece are modeled in the same manner as in case #.I and case

#.2. The three state variables xi x_ and x_vmeasure the positions of the

masses mi m_ and m_ .

This-mass model has the following open-loop transfer function:

X,(s)/F(s) = A/Y , X_(s)/F(s) - B/Y and X_(s)/F(s) = C/Y
where :Z J-

A -[._s+(_+_)s+C_+ks)]*Ems_+(b_%)s+(ks+k.)]-(bss+k.)

B : [m_s +(b_+b,)s+(ks+k_)]Eb_s+_]

C = [b_ s+kp.][bss+k5]

Y--[__÷(b,+_)s+k_]*[_s_+(b_+4)s+(_+_)]*[_+(b_+_+(_+9 ]-

-[_+C_ +_)s+C_+y_)][b:,s+k_I-Ira,#+(b,+b)s+k_]tbss+k_]_"
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The contact force is again the force across k

[] ks(x_- x,,)
and the simple force control law is

F = kF(F_- Fc) (k >=o)

The block

feedforward

functions

Fig.lO: Block diagram of the system of case #.3

diagram for this controller, Fig.lO,shows again
path takes the difference between two open-loop

>

\
Fig.11: Root locus plot for the system of Fig.12

that the
transfer

V
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The root locus plot, Fig.ll, shows a very interesting effect.

The system is only conditionally stable.

For low values of k, the system is stable; for Bigh values of k , the

system is unstable; and for some critical value of the force feedback

gain, the system is only marginally stable.

The + 60 asymptotes result from the system's having six open loop poles,

but only three open loop zeros. Inspection of the open-loop transfer
function confirms this: the numerator of the transfer function ralatlng

X (s) to F(s) is a third-order polynomlal in s.

4. MATHEMATICAL MODEL OF FORCE FEEDBACK CONTROL , FOR (ASEA ) RO(IOT

4. I GENERAL DESCRIPTION OF A.SEA ROBOT

The ASEA IRB go robot is a six axis manipulator coupled with a

sophisticated controller. While fig. 2 provided functional

representation of the ASEA robot , fig. 12 represents the control

system for each axis of the robot.

6 AXIS
DIGITAL
SERVO

AND
ROBOT

CONTROLLER

ADAPTIVE _
CONTROLLER I

P

. %
m

n

Fig.12 Block diagram of control system for each axis of the robot.
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Each robot joint is driven by a DC motor through a redactor. The motors
are powered by Pulse Width Modulation circuits using armature voltage

control technique. The controller uses both velocity and position

feedback signals in a conventional manner, with the PID inner velocity

feedback loop surrounded by by a position control loop. In order to
limit the armature current and to improve the linearity of the system a

current feedback loop is also employed.

4.2 ACCURATE MODEL WITH GENERAL PARAMETERS

Based on the block diagram depicted above and the operation of the

random motion simulator, it is clear that case #. 2 described in section

3 of this paper is most appropriate to be used as base model.

Using the force dependent voltage from the force/ torque sensor allows
the ASEA's adaptive control software to generate a change in the

velocity based on an error between the observed force and a bias value

representing the force setpoint value.

Fig. 15 is block diagram representation of model of force feedback
control structure . The equations governing the system is as following.

X R Y

FSp F

v

Fig. 13. Block diagram representing model of force feedback control

xe:>(R+ G, F)- G (S)F

X_ G,(S)(F_, - K_F) - G_(S)F = X/{[G;z(S)[G3(S) - G_(S)] I
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This would be the model that governs the behavior of the robot when
operating in a lead around mode, because of the lack of coupling
between the motion of the SSV and the generated force. When in contact
with a rigid body the interaction between the robot and an external
motion becomes coupled and is modeled as a stiff elastic member.

F = K(X - Y) , X = F/K + KY

[_ (s)][%(s) - G,_(S)]= Gx(S)

[F/K + KY]/ Gx(S) = Xp,+G, (S)(_._r K2F) - G_(S)F

[F/K + KY) = Xr_G_(S) + G_(S) G_(S) F_(T- G_(S)G,(S) K_F - G_(S) _.(S)F

F/K --XI_,(G_(S))+G_((S)G,(S)_ T- Gx(S)G l(S)K_F - Gx(X)G_(S)F

F[I/K + Gx(S)GI(S)K2 + Gx(S)Gs(S)] = XI_G_S) + Gx(S)GI(S)F_et"

F =IXG_(S)+ G_(S)G,(S)S_,_/[I/K+ Gx(S)G,(S)_*G_(S)G_(S)]

To make the model practical, it is needed to determine the transfer

functions of each block .

G_(S) = G_(S)*G c(S), where G_(S) is the well known transfer functionor tffe torque output vs applied voltage for a DC motor is given :

Ki
G(s)= ............*

Kt Ke+ RB

JS+B

JL/[K_Ke+RBi'S_' [jR + LB]/[_ K(:+ RB] S + I

2. G (S) is the transfer function of the compensator = Kg+ _/S

3. G (S) is the transfer function of the adaptive control path which was
-T_

determined [3] to be equal to K /S without delay and K /S * e with

delay.

4. G3(S) = Xr(S)/F(S) , _(S) = X_(S)/F(S), related to robot and flight
simulator dynamics and were determined in section 3.
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The model is still theoretical until the coefficients of the transfer

function are determined. In order to obtain concrete parameters of the

system , one can use two two different methods. Using catalogues and
manufacturer's data or direct measurement. While manufacturer's data can

often be accurate, accuracy of direct measurement obviously depends on

precision in measurement. In our case unfortunately obtaining data from

manufacturer was not possible, so the only alternative was to rely on

direct measurement of frequency and time response of the system, which

led to a simple single degree-of-freedom model as shown in Flg.14.

X R Y

Tcg+i

Fig. 14 Approximate model of the system

4.4 EXPERIMENTAL RESULTS

Fig. 15 is the time response of the system, figures 16 and 17 represent

the frequency response of the system. Fig 18 demonstrates a significant
time lag that exists in the adaptive control software for force control.

It was determined by simultaneously plotting the reference voltage into
the adaptive control port and the resulting motion .

This delay also could be identified via frequency response analysis.

Fig. 18 demonstrates the tremendous phase lag encountered at higher

frequencies, as typically found in systems with a time delay. An

approximate transfer function has been determined by [3] which provides
a fairly good fit.

6.0  .ss
x(s)Iv(S) =

S(0.1429 S + I)

From this transfer function and the data obtained by [3], the

following values may be assigned: T =0.14297, Kf= 6, K = 1341b/in,
K6= O,O04Vllb.

V
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5. CONCLUSIONS

An accurate lumped parameter model for the control system of ASEA

robot has been developed. Efforts to determine .concrete values for

the parameters has been unsuccessful. However, an approximate linear

model with concrete parameters to replace the accurate model has

been suggested.

Although no theoretical proof has been presented, practically it was

found out that time delay between the output and input signals in ASEA

controller can cause instability. Without the controller latency,

stable force control during both tracking and mating can be achieved.

The combination of passive compliance and force control provide

excellent performance when mated.

More over a series of lumped- parameter models has been developed in

order to understand the effects of robot and workpiece dynamics on the

stability of simple force controlled systems. An instability has been
shown to exist for robot models that include representation of a first

resonant mode for the arm. The effect of the workpiece dynamics remains

unclear. It has been shown that when the workpiece is modeled as a rigid

wall, the system can be unstable. Certainly if the workplece were very

complaint and extremely light there could be no force across the sensor,

degenerating the closed loop system to the open loop case, which

ofcourse is stable. The sensor and workpiece djmamics are therefore
important and should be modeled. Limited actuator bandwith, filtering,

and digital controller implementation can also cause instability. These

performance limitations must also be included in the system model used

for controller design.
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